@ Null Return % Launchnodes

SMART CONTRACT AUDIT REPORT

Produced for Launchnodes
by Null Return

Date: November 2025 PUBLIC

Stablecoin For Impact Security Report November, 2025

Contents
Prepared by e e e 1
Introduction 1
About Stablecoin For Impact 2
Project Overview 2
Scope 2
Methodology 3
Risk Classification 3
Findings 3
Medium e e e 4
[M-1] Missing Aave Protocol Token Validation in Factory 4
[M-2] Zero NGO Assets Due to Missing Decimal-Aware Minimum Deposit Validation 6
[M-3] Hardcoded WITHDRAW_GAP Incompatible with Low-Decimal Tokens 9
[M-4] Hardcoded MIN. WITHDRAWAL AMOUNT Blocks Legitimate Withdrawals 10
Low . o e 12
[L-1] Single-Step Ownership Transfer Risk 12
Informational L 13
[I-1] Redundant Storage Reads 13
[1-2] Unused Custom Error Declarations 14

[1-3] Unnecessary Inheritance of ERC721HolderUpgradeable and Unused Reentran-

cyGuardUpgradeable. e 14

[1-4] Inefficient Struct Storage Layout (Unpacked Variables) 17

[1-5] Duplicate Error Definitions 17

Severity Levels oL 18
Disclaimer L e 18
Recommendations L e 18
About Null Return 19

Prepared by

Project Manager: Alex Demidov

Auditors: Andy Cho, Alexander Mazaletskiy

Introduction

This document presents the results of a smart contract audit conducted for the Stablecoin For Impact (SFI) protocol.
The purpose of the audit was to evaluate the security and correctness of SFI’s smart contracts prior to deployment.
Special attention was given to identifying vulnerabilities that may lead to loss of funds, compatibility issues with
tokens of varying decimal precision, and logical errors in yield distribution and withdrawal operations.

NullReturn.io 1

Stablecoin For Impact Security Report November, 2025

About Stablecoin For Impact

Stablecoin For Impact (SFI) enables anyone to use stablecoins (USDT, USDC, and DAI) to generate secure, sustain-
able yield through Aave’s collateralized supply markets, and donate that yield to organizations driving real-world
social impact. This model empowers individuals and legal entities to contribute to poverty alleviation, climate
action, and other global causes, without giving up their original capital. Key features include:

* Yield Donation Model: Users deposit stablecoins and direct a percentage (or all) of the generated yield to
charitable organizations while retaining their principal.

+ Aave Integration: Leverages Aave’s proven DeFi lending protocol for secure yield generation through
collateralized supply markets.

* Multi-Token Support: Supports USDT, USDC, DAI, and other stablecoins with varying decimal precision
(2-18 decimals).

* Transparent Impact Tracking: Builds a marketplace of credible, data-driven organizations working on
poverty reduction, climate action, and other pressing challenges.

* Low-Risk Contributions: Donors retain their original capital, creating a sustainable, long-term financing
tool for social impact.

The protocol is designed to demonstrate that DeFi tools can help address the world’s biggest challenges while
preserving user funds and trust, challenging the perception that crypto is merely speculative.

Project Overview

Stablecoin For Impact is designed as a purpose-driven DeFi platform that transforms stablecoin holdings into a force
for social good. By depositing stablecoins into Aave’s lending pools, users generate yield that is automatically
distributed to verified charitable organizations based on user-defined percentages. The platform maintains full
capital preservation—users never lose their principal and can withdraw at any time.

The architecture combines on-chain smart contracts with Aave protocol integration, ensuring robust security for de-
posits, yield calculation, and distribution. The protocol implements a share-based system for tracking user deposits
and NGO allocations, with dynamic calculations accounting for accrued interest from Aave.

Scope

This audit covered the core components of the Stablecoin For Impact protocol, with a focus on the correctness,
safety, and robustness of its smart contracts. The analysis was based on the source code provided in the
Launchnodes-Ltd/stablecoin-impact repository at the specified commits.

Repository: https://github.com/Launchnodes-Ltd/stablecoin-impact
Initial Audit Commit: e€7437fd63fa2¢c13866e7162a99fe5efb88441b93
Fixes Commit: fa3b273e07be0cad4538f3d8fb8babb7e42¢c7e853

Audit Target: Solidity smart contracts implementing core deposit logic, Aave integration, yield distribution, with-
drawal mechanisms, and token validation.

Files Audited: - stablecoin-impact/src/Aavelmpact.sol - stablecoin-impact/src/AavelmpactFactory.sol

NullReturn.io 2

https://github.com/Launchnodes-Ltd/stablecoin-impact
https://github.com/Launchnodes-Ltd/stablecoin-impact/commit/e7437fd63fa2c13866e7162a99fe5efb8844fb93
https://github.com/Launchnodes-Ltd/stablecoin-impact/commit/fa3b273e07be0ca4538f3d8fb8ba6b7e42c7e853

Stablecoin For Impact Security Report November, 2025

Methodology

The goal of this audit was to identify potential vulnerabilities, logical errors, and deviations from best practices in

the Stablecoin For Impact smart contracts. Our process followed a structured and layered approach, including:

1. Manual Code Review Each file in scope was reviewed manually by experienced security auditors to analyze:

* Correctness of deposit and withdrawal logic

+ Aave protocol integration security

» Token decimal compatibility across different stablecoins
* Share calculation and yield distribution mechanisms

* Access control and ownership management

2. Compliance Verification The contracts were checked for conformance with relevant Ethereum standards,

including:

* ERC20 token interactions and decimal handling
« Aave V3 protocol integration patterns
* OpenZeppelin upgradeable contract standards

3. Static Analysis & Tooling We used automated tools to detect:

* Known vulnerability patterns (e.g., reentrancy, arithmetic issues)
* Storage layout inefficiencies

+ Unused code and declarations

 Gas optimization opportunities

4. Threat Modeling We examined critical assumptions and attack surfaces relevant to SFI’s architecture, in-
cluding:

» Token decimal compatibility issues (2-18 decimals)
» Aave protocol dependency risks

* Minimum deposit and withdrawal validation

* Share calculation edge cases with small amounts

* Zero address and null value validations

5. Issue Reporting & Validation All issues were documented with severity levels (Medium, Low, Informa-
tional). After reporting, the SFI team responded and applied fixes, which we then re-reviewed and validated.

Risk Classification

Impact: High | Impact: Medium @ Impact: Low

Likelihood: High Critical High Medium
Likelihood: Medium | High Medium Low
Likelihood: Low Medium Low Low

Findings

In this section, we document the security issues identified during the audit of Stablecoin For Impact, along with their
severity levels, status, and relevant recommendations. Each finding includes a description of the issue, potential

impact, and the client’s response with implemented fixes.

NullReturn.io 3

Stablecoin For Impact Security Report

November, 2025

ID

M-1

L-1

I-1

I-2

I-3

I-4

I-5

Title Severity

Missing Aave Protocol =~ Medium
Token Validation in
Factory

Zero NGO Assets Due Medium
to Missing

Decimal-Aware

Minimum Deposit

Validation

Hardcoded Medium
WITHDRAW_GAP

Incompatible with

Low-Decimal Tokens

Hardcoded Medium
MIN_WITHDRAWAL AMOUNT
Blocks Legitimate

Withdrawals

Single-Step Ownership ~ Low
Transfer Risk

Redundant Storage Informational
Reads

Unused Custom Error Informational
Declarations

Unnecessary Informational
Inheritance of
ERC721HolderUpgradeable

and Unused Reentrancy-
GuardUpgradeable

Inefficient Struct Informational
Storage Layout
(Unpacked Variables)

Duplicate Error Informational
Definitions

Medium

[M-1] Missing Aave Protocol Token Validation in Factory

Status: Resolved

Status

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

Initial Commit: €e7437fd63fa2c13866e7162a99fe5efb8844fb93

Fix Commit: £a3b273e07be0cad538f3d8fb8bacb7e42c7e853

Location: AaveImpactFactory.sol:addValidDepositToken ()

NullReturn.io

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpactFactory.sol

Stablecoin For Impact Security Report November, 2025

* Impact: The factory allows adding arbitrary token addresses without verifying Aave protocol support, lead-
ing to:

— Failed deposits when users supply unsupported tokens
— Locked user funds if tokens transfer but cannot be supplied to Aave
— Contract malfunction from Aave reverts on unsupported assets

* Description: The addvValidDepositToken () function lacks validation that the token is an active
reserve in Aave with a corresponding aToken address.

function addvValidDepositToken (address newTokenAddress, address
< _wrappedTokenAddress) public onlyOwner {

if (newTokenAddress == address(0)) revert NullAddress() ;
if (wrappedTokenAddress == address (0)) revert NullAddress() ;
if (validDepositTokenAddresses|[newTokenAddress] '= address(0)) {

revert AlreadyExist () ;

}

validDepositTokenAddresses|[newTokenAddress] = wrappedTokenAddress;

* Recommendation: Integrate Aave’s ProtocolDataProvider to validate token support before
whitelisting:

import {IProtocolDataProvider} from

< "QRaave/core-v3/contracts/interfaces/IProtocolDataProvider.sol";
IProtocolDataProvider public immutable protocolDataProvider;

constructor (
address aaveSC,
address ngolImplementationAddress,
address owner,
address _dataProvider
) Ownable (owner) {
if (dataProvider == address(0)) revert NullAddress();
protocolDataProvider = IProtocolDataProvider(dataProvider) ;
aaveSC = aaveSC;
ngolmplementationAddress = ngolmplementationAddress;

function addValidDepositToken (
address newTokenAddress,
address wrappedTokenAddress
) public onlyOwner {
if (_newTokenAddress == address(0)) revert NullAddress() ;
if (wrappedTokenAddress == address(0)) revert NullAddress() ;

// Step 1: Validate aToken mapping
(address aTokenAddress, ,) =
< protocolDataProvider.getReserveTokensAddresses (newTokenAddress) ;
if (aTokenAddress !'= wrappedTokenAddress) {
revert InvalidATokenMapping () ;

if (validDepositTokenAddresses|[newTokenAddress] !'= address(0)) {

NullReturn.io 5

Stablecoin For Impact Security Report November, 2025

revert AlreadyExist() ;

// Step 2: Get reserve configuration data
(

uint256 decimals,

uint256 1ltv,

uint256 liquidationThreshold,

uint256 liquidationBonus,

uint256 reserveFactor,

bool usageAsCollateralEnabled,

bool borrowingEnabled,

bool stableBorrowRateEnabled,

bool isActive,

bool isFrozen
) = protocolDataProvider.getReserveConfigurationData (newTokenAddress) ;

// Step 3: Validate reserve 1s active
if ('isActive) {

revert ReserveNotActive () ;

// Step 4: Validate reserve 1is not frozen
if (isFrozen) {

revert ReserveFrozen () ;

validDepositTokenAddresses|[newTokenAddress] = wrappedTokenAddress;
emit ValidDepositTokenAdded (newTokenAddress, wrappedTokenAddress) ;

* Client Response: Added integration with poolDataProvider to validate supported tokens before
adding them to the whitelist.

[M-2] Zero NGO Assets Due to Missing Decimal-Aware Minimum Deposit Validation

+ Status: Resolved

* Initial Commit: 616cf776b252171ae36ble9bfeleleB8a77712adbe
* Fix Commit: £a3b273e07be0cad4538£3d8fb8babb7e42c7e853

* Location: AaveImpact.sol:assetsCalculation (), line ~467

* Impact: When users deposit with minimum percentage (100 = 1%) and small amounts, the NGO assets
calculation can result in zero, leading to division by zero in subsequent calculations and incorrect share
distribution. The lack of decimal-aware minimum deposit validation allows this scenario across tokens with

different decimal precision.

* Description: The contract lacks minimum deposit validation that accounts for token decimals. This allows
users to deposit amounts that, when multiplied by the minimum NGO percentage, produce zero NGO assets
due to integer division truncation. The problem varies by token decimals:

NullReturn.io 6

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/616cf776b252171ae36b1e9bfe0e0e8a7712adbe/src/AaveImpact.sol#L467

Stablecoin For Impact Security Report November, 2025

Example scenarios:

— GUSD (2 decimals): User deposits 50 units (0.50 GUSD) at 1% — ngoAssets = 50 * 100
/ 10000 = 0 — Division by zero

— USDC (6 decimals): User deposits 5000 units (0.005 USDC) at 1% — ngoAssets = 5000 *
100 / 10000 = 50 — Works but very small

— DAI (18 decimals): User deposits 50 units (0.00000000000000005 DAI) at 1% — ngoAssets =
50 * 100 / 10000 = 0 — Division by zero

function assetsCalculation(uint256 amount, uintlé percent, address
» _tokenAddress) private {
uint256 ngoAssets = amount.mulDiv(percent, PERCENT DIVIDER) ;
// @audit Can be 0 for small amounts: 50 * 100 / 10000 = 0

_assets[msg.sender] [tokenAddress] [depositId] = amount - ngoAssets;
if (totalShares[tokenAddress] == 0) {
_ngoShare = ngoAssets;
_userShares[msg.sender] [tokenAddress] [depositId] =
~ _assets[msg.sender] [tokenAddress] [depositId]
.mulDiv (_ngoShare, ngoAssets); // @Qaudit Division by zero if
< _ngoAssets = 0
}
//

* Recommendation: Implement decimal-aware minimum deposit validation that ensures non-zero NGO as-
sets for all token types:

import {IERC20Metadata} from
~ "Qopenzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

// Add custom error
error InvalidDepositAmount () ;
error NGOAssetsZero () ;

/**

* @notice Calculate minimum deposit amount based on token decimals

* @dev Ensures at least 1.00 tokens deposit, guaranteeing min 0.01 tokens
- for NGO at 1%

* @param _tokenAddress Address of the deposit token

* @return Minimum deposit amount in token's smallest unit

*/
function getMinDepositAmount (address tokenAddress) internal view returns

o (uint256) {

uint256 decimals = IERC20Metadata(tokenAddress) .decimals () ;

// Minimum 1.00 tokens for all token types
// This ensures: 1.00 * 1% = 0.01 tokens minimum for NGO (non-zero)
return 10 ** decimals; // 1.00 tokens scaled to decimals

function deposit(
address _tokenAddress,

NullReturn.io 7

Stablecoin For Impact Security Report November, 2025

uint256 tokenAmount,
uintl6 ngoPercent

public

notFinished
validDeposit (ngoPercent)
onlyExistingToken (tokenAddress)
notBanned

// Validate minimum deposit amount based on token decimals
uint256 minDeposit = getMinDepositAmount (tokenAddress) ;
if (_tokenAmount < minDeposit) {

revert InvalidDepositAmount () ;

address wrappedTokenAddress =
» factory.validDepositTokenAddresses (tokenAddress) ;

IERC20 (_tokenAddress) .safeTransferFrom (msg.sender, address (this),
< _tokenAmount) ;
IERC20 (_tokenAddress) .forceApprove (address (aavePool), tokenAmount) ;

_balanceBeforeDeposit[tokenAddress] =
< IERC20 (wrappedTokenAddress) .balanceOf (address (this)) ;

emit Deposit (
_depositId,
msg.sender,
_tokenAmount,
_ngoPercent,
address (this) ,
block.timestamp,
block.number,
_tokenAddress

)

aavePool.supply (tokenAddress, tokenAmount, address(this), 0);
uint256 balanceAfter =

- IERC20 (wrappedTokenAddress) .balanceOf (address (this)) ;
uint256 balancelInWrappedTokens = balanceAfter -

< _balanceBeforeDeposit[tokenAddress];

assetsCalculation(balanceInWrappedTokens, ngoPercent, tokenAddress);

_depositId++;

* Client Response: Implemented new internal function getMinDepositAmount to validate tokens with
all decimals.

NullReturn.io 8

Stablecoin For Impact Security Report November, 2025

[M-3] Hardcoded WITHDRAW_GAP Incompatible with Low-Decimal Tokens

 Status: Resolved

* Initial Commit: e 7437£d63fa2c13866e7162a99fe5efb8844£fb93
* Fix Commit: £a3b273e07be0cad538£3d8fb8babb7e42c7e853

* Location: AaveImpact.sol:withdraw (), lines 347-349

 Impact: The hardcoded WITHDRAW GAP = 100 assumes 18-decimal tokens but causes incorrect be-
havior for tokens with fewer decimals, potentially forcing users to withdraw their entire balance when they

intended a partial withdrawal.

* Description: For tokens with low decimals (e.g., GUSD with 2 decimals), the gap of 100 units represents
1.00 tokens, which may be significantly higher than intended for dust prevention.

uint8 constant WITHDRAW GAP = 100;

function withdraw(uint256 amount, uint256 id, address _tokenAddress)

- public {
uint256 userBalance = getUserBalance (msg.sender, _id, _tokenAddress);
if (_userBalance - _amount < WITHDRAW GAP) {
_amount = userBalance; // Forces full withdrawal
}
//

Example: Token with 2 decimals, user balance 12.00 tokens (1200), wants to withdraw 11.50 (1150):

— Remaining: 1200 - 1150 = 50 < 100
— Result: Forces withdrawal of entire 12.00 tokens instead of leaving 0.50

* Recommendation: Implement dynamic gap calculation based on token decimals:

import {IERC20Metadata} from
o "Qopenzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

function getWithdrawGap (address tokenAddress) internal view returns
o (uint256) {
uint256 decimals = IERC20Metadata(tokenAddress) .decimals() ;

// Set gap to approximately 0.01 tokens for all token types
if (decimals <= 2) {
return 1; // 0.01 tokens for 2 decimals
} else {
return 10 ** (decimals - 2); // 0.01 tokens scaled to decimals

function withdraw (
uint256 amount,
uint256 id,
address _tokenAddress
) public validWithdrawalAmount (amount) onlyExistingToken (tokenAddress) {
uint256 userBalance = getUserBalance (msg.sender, 1id, tokenAddress);

NullReturn.io 9

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L347-L349

Stablecoin For Impact Security Report November, 2025

if (_amount > userBalance) {
revert RequestAmountTooLarge (amount) ;

uint256 gap = getWithdrawGap (tokenAddress) ;

if (_userBalance - _amount < gap) {
_amount = userBalance;
}
withdrawCalculation(amount, id, userBalance, _tokenAddress);

emit Withdraw (
msg.sender,
address (this) ,
_amount,
block.timestamp,
block.number,
_id,
__tokenAddress

) 5

uint256 withdrawnAmount = aavePool.withdraw(tokenAddress, amount,
< address (this)) ;

if (withdrawnAmount != amount) {
revert AaveWithdrawnAmountMismatch (amount, withdrawnAmount) ;

IERC20 (_tokenAddress) .safeTransfer (msg.sender, amount) ;

* Client Response: Implemented new internal function getWithdrawGap. Removed unnecessary con-
stant WITHDRAW GAP.

[M-4] Hardcoded MIN_WITHDRAWAL_AMOUNT Blocks Legitimate Withdrawals

+ Status: Resolved

* Initial Commit: €e7437£d63£fa2c13866e7162a99feb5efb8844fb93
* Fix Commit: £a3b273e07be0cad4538£3d8fb8batb7e42c7e853

* Location: AaveImpact.sol:validWithdrawalAmount modifier

* Impact: The hardcoded MIN WITHDRAWAL AMOUNT = 100 blocks legitimate withdrawals for low-
decimal tokens and can permanently lock user funds if their remaining balance falls below this threshold.

* Description: For tokens with 2 decimals (e.g., GUSD), MIN_ WITHDRAWAL AMOUNT = 100 represents
1.00 tokens, blocking all withdrawals under $1 and potentially locking small remaining balances.

NullReturn.io 10

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol

Stablecoin For Impact Security Report

November, 2025

uint8 constant MIN WITHDRAWAL AMOUNT = 100;

modifier wvalidWithdrawalAmount (uint256 _amount) {
if (_amount < MIN_WITHDRAWAL_AMOUNT) {
revert InvalidWithdrawalAmount () ;

Critical Example: User has 50 units (0.50 tokens with 2 decimals) remaining. They cannot withdraw be-

cause 50 < 100, permanently locking their funds.

* Recommendation: Implement dynamic minimum withdrawal based on token decimals and allow full bal-

ance withdrawals:

import {IERC20Metadata} from

o "Qopenzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

function getMinWithdrawalAmount (address _tokenAddress) internal view returns

< (uint256) {
uint256 decimals = IERC20Metadata(tokenAddress) .decimals () ;

// Set minimum to 0.01 tokens for all token types

if (decimals == 0) {

return 1; // 1 whole token for tokens without decimals
} else if (decimals == 1) {

return 1; // 0.1 tokens
} else {

return 10 ** (decimals - 2); // 0.01 tokens

function withdraw (
uint256 amount,
uint256 _id,
address tokenAddress

) public onlyExistingToken (tokenAddress) {

uint256 userBalance = getUserBalance (msg.sender, id, tokenAddress);

if (_amount > userBalance) {
revert RequestAmountToolarge (amount) ;

// Allow full balance withdrawal OR minimum amount

uint256 minAmount = getMinWithdrawalAmount (tokenAddress) ;

if (_amount != userBalance && amount < minAmount) {
revert InvalidWithdrawalAmount () ;

uint256 gap = getWithdrawGap (tokenAddress) ;
if (userBalance - _amount < gap) {

_amount = userBalance;

NullReturn.io

11

Stablecoin For Impact Security Report November, 2025

withdrawCalculation(amount, id, userBalance, tokenAddress);

emit Withdraw (
msg.sender,
address (this) ,
_amount,
block.timestamp,
block.number,
_id,
__tokenAddress

) ;

uint256 withdrawnAmount = aavePool.withdraw(tokenAddress, amount,
< address (this)) ;

if (withdrawnAmount != amount) {
revert AaveWithdrawnAmountMismatch(amount, withdrawnAmount) ;

IERC20 (_tokenAddress) .safeTransfer (msg.sender, amount) ;

* Client Response: Implemented new internal function getMinWithdrawAmount. Removed unneces-
sary constant MIN WITHDRAWAL AMOUNT.

Low
[L-1] Single-Step Ownership Transfer Risk

+ Status: Resolved

¢ Initial Commit: €7437£d63fa2c13866e7162a99fe5efb8844£fb93
* Fix Commit: £a3b273e07be0cad4538£3d8fb8babb7e42c7e853

* Location: AaveImpact.sol, AaveImpactFactory.sol

* Impact: Using OwnableUpgradeable instead of Ownable2StepUpgradeable creates risk of
accidentally transferring ownership to an incorrect address, permanently losing admin control.

* Description: Single-step ownership transfer allows immediate transfer without confirmation from the new

owner, increasing risk of typos or malicious input.
* Recommendation: Upgrade to two-step ownership transfer pattern:

// In AavelImpact.sol
import {Ownable2StepUpgradeable} from "Qopenzeppelin/contracts-—
~ upgradeable/access/Ownable2StepUpgradeable.sol";

contract AaveImpact is
Initializable,
ReentrancyGuardUpgradeable,
UUPSUpgradeable,

NullReturn.io 12

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpactFactory.sol

Stablecoin For Impact Security Report November, 2025

Ownable2StepUpgradeable

function initialize (
address aavePoolAddress,
address rewardOwnerAddress,
address _owner,
address oracle,
address factoryAddress

) public initializer {
__UUPSUpgradeable_init () ;
__Ownable2Step_init () ;
__ReentrancyGuard _init();

_transferOwnership (owner) ;

// ... rest of initialization

// In AavelImpactFactory.sol
import {Ownable2Step} from

~ "Qopenzeppelin/contracts/access/Ownable2Step.sol";

contract AavelmpactFactory is Ownable2Step ({
constructor (
address aaveSC,
address ngolImplementationAddress,
address _owner
) Ownable (owner) {

// ... lnitialization

* Client Response: Added integration with Ownable2Step onAaveImpact and AaveImpactFac-
tory.

Informational
[1-1] Redundant Storage Reads

 Status: Resolved
¢ Fix Commit: fa3b273e07be0cad538f3d8fb8babb7e42c7e853
* Location: AaveImpact.sol#637 AaveImpact.sol#760

« Impact: Repeated storage reads of the same unmodified state variable unnecessarily increase gas consump-

tion.

* Description: The following functions read storage values multiple times:

— handleNGOShareDistribution — pendingNGORewards|[tokenAddress]
— assetsCalculation — depositId

NullReturn.io 13

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L637
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L760

Stablecoin For Impact Security Report November, 2025

* Recommendation: Cache the storage variable in a local (memory) variable at the beginning of the function
to eliminate redundant SLOAD operations:

function handleNGOShareDistribution (address _tokenAddress) public onlyOracle
o |

uint256 cachedPendingReward = pendingNGORewards[tokenAddress];

// ... use cachedPendingReward

function assetsCalculation (
uint256 amount,
uintl6 percent,
address _tokenAddress
) private {
uint256 depositId = depositId;
// ... use depositId

* Client Response: Added new variables to hand1eNGOShareDistributionand assetsCalcu-
lation.

[1-2] Unused Custom Error Declarations

e Status: Resolved
e Fix Commit: fa3b273e07be0cad4538£f3d8fb8batbb7e42c7e853

* Location: RaveImpact.sol#174 AaveImpact.sol#184 Aavelmpact.sol#189
AaveImpact.sol#199 AaveImpact.sol#214

* Impact: Unused custom error declarations contribute unnecessary bytecode to the contract, increasing de-
ployment gas cost, overall contract size, and codebase complexity.

 Description: The contract declares some custom errors, but these are never used in the contract.

* Recommendation: Remove all unused custom error declarations to reduce contract size and deployment
cost:

// Remove these 1f not used:

// error RequestAmountTooSmall (uint256 _amount) ;

// error InvalidRequestIdForUser (address _claimer, uint256 requestId);
// error NotFinalizedStatus() ;

// error TokenNotAllowed() ;

// error ZeroAmount () ;

* Client Response: Removed unused errors: RequestAmountTooSmall, InvalidRequestId-
ForUser,NotFinalizedStatus, TokenNotAllowed (), ZeroAmount ().

[1-3] Unnecessary Inheritance of ERC721HolderUpgradeable and Unused
ReentrancyGuardUpgradeable

e Status: Resolved

NullReturn.io 14

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L174
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L184
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L189
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L199
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L214

Stablecoin For Impact Security Report November, 2025

* Fix Commit: fa3b273e07be0cad4538£3d8fb8batb7e42c7e853
* Location: AaveImpact.sol:22,AaveImpact.sol:23

e Impact: The inclusion of ERC721HolderUpgradeable and ReentrancyGuardUpgrade-
able adds unnecessary bytecode and increases deployment gas cost. Additionally, Reentrancy-
GuardUpgradeable is initialized but the nonReentrant modifier is never used in any function,

providing no actual protection while consuming gas.

 Description: The contract inherits from two upgradeable utilities that serve no purpose:

1. ERC721HolderUpgradeable: Implements onERC721Received to safely receive ERC721
tokens via safeTransferFrom, but the contract never receives, stores, or interacts with NFTs.

2. ReentrancyGuardUpgradeable: Initialized in the initialize () function via Reen-
trancyGuard init (), butthe nonReentrant modifier is not applied to any external/public
functions in the contract.

// Current inheritance
contract Aavelmpact is
Initializable,
ReentrancyGuardUpgradeable, // @audit Initialized but never used
UUPSUpgradeable,
OwnableUpgradeable,
ERC721HolderUpgradeable // @audit Not needed - no NFT functionality

7/

function initialize (
address aavePoolAddress,
address rewardOwnerAddress,
address owner,
address oracle,
address factoryAddress
) public initializer ({
__ERC721Holder_init(); // @audit Unnecessary initialization
__UUPSUpgradeable_init () ;
__Ownable_init(owner) ;
__ReentrancyGuard_init(); // @audit Initialized but nonReentrant

« modifier never used

/)

* Recommendation: Apply the nonReentrant modifier to sensitive functions and remove ERC721HolderUpgradeab

// Remove import:
// import {ERC721HolderUpgradeable} from "@openzeppelin/contracts-
» upgradeable/token/ERC721/utils/ERC721HolderUpgradeable.sol";

contract Aavelmpact is
Initializable,
ReentrancyGuardUpgradeable,
UUPSUpgradeable,
OwnableUpgradeable

NullReturn.io 15

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L22
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L23

Stablecoin For Impact Security Report

November, 2025

// ... contract code

function initialize (
address _aavePoolAddress,
address rewardOwnerAddress,
address _owner,
address oracle,
address factoryAddress
) public initializer {
// Remove: _ ERC721Holder init();

__UUPSUpgradeable init() ;
__Ownable_init(owner);
__ReentrancyGuard init() ;

// ... rest of initialization

// Add nonReentrant to sensitive functions
function deposit(

address _tokenAddress,

uint256 tokenAmount,

uintl6 ngoPercent

public

nonReentrant

notFinished
validDeposit (ngoPercent)
onlyExistingToken (tokenAddress)
notBanned

// ... function body

function withdraw (
uint256 _amount,
uint256 id,
address tokenAddress

public
nonReentrant
onlyExistingToken (tokenAddress)

// ... function body

function handleNGOShareDistribution (address
public
nonReentrant

onlyOracle

// ... function body

__tokenAddress)

NullReturn.io

16

Stablecoin For Impact Security Report November, 2025

Client Response: Removed ERC721HolderUpgradeable from AaveImpact. Added non-
Reentrant modifier to sensitive functions.

[1-4] Inefficient Struct Storage Layout (Unpacked Variables)

Status: Resolved
Fix Commit: £a3b273e07be0cad538f3d8fb8babb7e42c7e853
Location: AaveImpact.sol#33

Impact: Inefficient packing increases storage slot usage, leading to higher gas costs and cumulative gas
waste.

Description: The contract defines a UserDepositInfo struct that stores multiple variables, but the
variables are not packed efficiently according to EVM storage rules.

Recommendation: Reorder struct fields from largest to smallest and group small types together to maximize
packing:

struct UserDepositInfo {
uint256 amount;
uint256 startDate;
address tokenAddress;
uintlé percent;

Client Response: Reordered struct fields.

[I1-5] Duplicate Error Definitions

Status: Resolved

Fix Commit: fa3b273e07be0cad538£3d8fb8babb7e42c7e853

Location: AaveImpact.sol#167,AaveImpact.sol#172

Impact: Two similar error definitions cause code confusion and reduced maintainability.

Description: The contract defines two errors that appear to serve the same purpose:

— InvalidWithdrawalAmount () - Used in validWithdrawalAmount modifier
— InvalidWithdrawAmount () - Usedin withdrawCalculation () when ratio is zero

Recommendation: Consolidate into a single, more descriptive error:

// Remove:
// error InvalidWithdrawalAmount () ;
// error InvalidWithdrawAmount () ;

NullReturn.io 17

https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L33
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L167
https://github.com/Launchnodes-Ltd/stablecoin-impact/blob/e7437fd63fa2c13866e7162a99fe5efb8844fb93/src/AaveImpact.sol#L172

Stablecoin For Impact Security Report November, 2025

// Replace with:
error InvalidWithdrawalAmount (string reason) ;

* Client Response: Added one error InvalidWithdrawalAmount (string reason).

Severity Levels

Each issue is categorized according to its severity. Here’s how each severity level is defined:

* High: Critical vulnerabilities that may result in significant loss of funds, unauthorized control, or failure of
core zapping and wallet functionality.

* Medium: Issues that could potentially cause financial loss or disrupt functionality but are less immediate or
impactful than high-severity issues.

* Low: Minor issues that have no immediate risk but may affect user experience or the maintainability of the
code.

+ Informational: Non-critical issues such as minor optimizations or suggestions for best practices.

Disclaimer

This audit is not a guarantee of the absence of vulnerabilities or bugs. Security audits are time-boxed and can
only identify issues present at the time of the audit. Audits complement other security measures but cannot re-
place comprehensive testing, code reviews, and ongoing security monitoring. We recommend that multiple audits
be conducted, and a bug bounty program be established for continued testing. This report does not provide any
investment advice, nor does it guarantee the performance or compliance of the audited project.

Recommendations

Based on our audit of the Stablecoin For Impact smart contracts, we provide the following general recommendations
to enhance the security and maintainability of the project:

1. Regular Independent Audits While this audit covers the core components of the codebase, we strongly
recommend conducting additional independent audits at key stages of the project’s lifecycle, especially before

adding support for new token types or making significant protocol changes.

2. Continuous Monitoring and Bug Bounty Program We recommend the implementation of a public bug
bounty program to encourage third-party security researchers to identify and report vulnerabilities in deposit
operations, withdrawal mechanisms, or yield distribution logic. Ongoing monitoring of smart contract be-

havior in production is also essential.

3. Comprehensive Unit Testing Expanding test coverage, particularly for edge cases with different token dec-
imals (2-18 decimals), minimum deposit/withdrawal amounts, and share calculations with small values, can
help identify potential vulnerabilities. Ensure that tests are continuously integrated into the development

process.

4. Enhanced Access Control Management Carefully review and limit the privileges of administrator roles,
particularly those managing the token whitelist and oracle functions. The implemented two-step ownership

transfer pattern significantly improves security in this area.

NullReturn.io 18

Stablecoin For Impact Security Report November, 2025

5. Token Compatibility Testing Regularly test the protocol with various stablecoins having different decimal
configurations (GUSD with 2 decimals, USDC with 6 decimals, DAI with 18 decimals) to ensure the dynamic
minimum deposit and withdrawal calculations work correctly across all supported tokens.

6. Aave Protocol Integration Monitoring Stay informed of changes to the Aave V3 protocol that could affect
token support, reserve status, or yield generation. The implemented Aave token validation significantly
improves safety in this area.

7. User Education Provide clear documentation about minimum deposit amounts for different tokens, with-
drawal mechanisms, and the share-based yield distribution system to ensure users understand how their funds
are managed and how yields are calculated.

About Null Return

Null Return is a Web3 security firm specializing in smart contract audits, formal verification, architecture consulting,
and pre-deployment reviews. We work closely with builders to uncover and help resolve vulnerabilities before they
become problems — combining deep technical knowledge with a hands-on, product-aware approach. We take pride
in being fast, transparent, and highly responsive throughout the audit process.

Contact us:

* Website: nullreturn.io

» Telegram: @nullreturn_io
 Twitter: @nullreturn_io
 LinkedIn: Null Return

NullReturn.io 19

https://nullreturn.io
https://t.me/nullreturn_io
https://twitter.com/nullreturn_io
https://www.linkedin.com/company/null-return

	Prepared by
	Introduction
	About Stablecoin For Impact
	Project Overview
	Scope
	Methodology
	Risk Classification
	Findings
	Medium
	[M-1] Missing Aave Protocol Token Validation in Factory
	[M-2] Zero NGO Assets Due to Missing Decimal-Aware Minimum Deposit Validation
	[M-3] Hardcoded WITHDRAW_GAP Incompatible with Low-Decimal Tokens
	[M-4] Hardcoded MIN_WITHDRAWAL_AMOUNT Blocks Legitimate Withdrawals

	Low
	[L-1] Single-Step Ownership Transfer Risk

	Informational
	[I-1] Redundant Storage Reads
	[I-2] Unused Custom Error Declarations
	[I-3] Unnecessary Inheritance of ERC721HolderUpgradeable and Unused ReentrancyGuardUpgradeable
	[I-4] Inefficient Struct Storage Layout (Unpacked Variables)
	[I-5] Duplicate Error Definitions

	Severity Levels
	Disclaimer
	Recommendations

	About Null Return

